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ABSTRACT

The double spherical harmonics angular approximation in the lowest order, i.e. double P0 (DP0),
is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems
in planar geometry. The standard P1 angular approximation represents the angular dependence of
the radiation specific intensity using a linear function in the angular domain−1≤ µ≤ 1. In
contrast, the DP0 angular approximation represents the angular dependence as isotropic in each
half angular range−1≤ µ< 0 and 0< µ≤ 1. Neglecting the time derivative of the radiation flux,
both the P1 and DP0 equations can be written as a single diffusion equation for the radiation
energy density. Although the DP0 diffusion approximation is expected to be less accurate than the
P1 diffusion approximation at and near thermodynamic equilibrium, the DP0 angular
approximation can more accurately capture the complicatedangular dependence near the
non-equilibrium wave front. We develop an adaptive angulartechnique that locally uses either the
DP0 or the P1 diffusion approximation depending on the degree to which the radiation and
material fields are in thermodynamic equilibrium. Numerical results are presented for a test
problem due to Su and Olson for which a semi-analytic transport solution exists. The numerical
results demonstrate that the adaptive P1-DP0 diffusion approximation can yield improvements in
accuracy over the standard P1 diffusion approximation for non-equilibrium grey radiative transfer.

KEYWORDS : radiative transfer, non-equilibrium radiation diffusion, spherical harmonics
approximation, double spherical harmonics approximation

1. INTRODUCTION

Time-dependent non-equilibrium radiative transfer problems in the transport description are
challenging to solve numerically. As a result, low-order spherical harmonics angular
approximations have been examined as less expensive computational alternatives [1]. The
standard P1 angular approximation represents the angular dependence of the radiation specific
intensity at each point in space and time using a linear function in the angular domain
−1≤ µ≤ 1 [2]. Thus, there are two angular moment unknowns, the radiation energy density
(proportional to the zeroth moment) and the radiation flux (first moment), at each point in space
and time. Under the assumption that the time derivative of the radiation flux is negligible, the two



equations for the angular moment unknowns can be combined into a single P1 diffusion equation
for the radiation energy density. An equation for the energybalance of the background material
through which the radiation is propagating and with which itis exchanging energy is also
required.

In contrast, the double P0 (DP0) angular approximation represents the angular dependenceof the
radiation specific intensity as isotropic (constant) in each half angular range−1≤ µ< 0 and
0 < µ≤ 1, again resulting in two (half-range) angular moment unknowns at each point in space
and time [2]. The DP0 approximation of the radiation specific intensity can be written in a form
that differs from the P1 expression only in the linearly angular component [3–5]. The resulting
DP0 diffusion approximation (under the assumption of a negligible radiation flux time derivative)
differs from the P1 diffusion approximation only in the definition of the diffusion coefficient. The
DP0 diffusion approximation can be incorporated into a non-equilibrium planar geometry grey
radiation diffusion code with only minor modifications.

As pointed out by Olson et al [1], the angular dependence of the specific intensity near a radiation
wave front is complicated. The sharp radiation wave front can act as an internal boundary that is
difficult for the P1 angular approximation to accurately model. At an internal boundary, the
angular distribution of the specific intensity can be nearlydiscontinuous when viewed as a
function of angle. Brantley [5] has recently investigated the application of a mixed P1-DP0
angular approximation for more accurately treating material interfaces for time-independent
planar geometry neutronics problems. In this paper, we investigate the application of the DP0
angular approximation to more accurately model the angulardependence of the radiation specific
intensity near a wave front for non-equilibrium grey radiative transfer problems. Numerical
results from a test problem proposed by Su and Olson [6] for which a semi-analytic transport
solution is available demonstrates that the DP0 diffusion approximation can produce more
accurate results than the P1 diffusion approximation when the radiation and material are out of
equilibrium.

When the radiation and material energies reach thermodynamic equilibrium, however, the
radiative transfer and material energy balance equations asymptotically limit to first order to the
equilibrium P1 diffusion approximation [7]. Under these conditions, the DP0 diffusion
approximation gives an equation with a different (incorrect) diffusion coefficient. As such, we
expect the DP0 diffusion approximation to be less accurate than the P1 diffusion approximation in
and near thermodynamic equilibrium.

These physical and theoretical considerations motivated the development of an angularly adaptive
P1-DP0 diffusion approximation that is designed to use the most accurate angular approximation
(either DP0 or P1) at any given point in space and time. The adaptivity criterion is simple,
physically-based, and essentially prescribes the use of the DP0 diffusion approximation when the
radiation and material energy fields are away from thermodynamic equilibrium and the use of the
P1 diffusion approximation when the radiation and material energy fields are in or near
equilibrium. Numerical results from the Su and Olson test problem are presented to demonstrate
that this adaptive angular approximation can yield overallaccuracy improvements.

The remainder of this paper is organized as follows. In Section 2, we briefly outline the
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derivations of the P1 and DP0 diffusion approximations for the case of non-equilibrium grey
radiative transfer. We then describe how these two angular approximations can be readily
combined into a single set of equations with a single parameter allowing the selection of the P1 or
the DP0 approximation. We conclude Section 2 with a description of the angularly adaptive
P1-DP0 diffusion approximation. In Section 3, we compare P1, DP0, and adaptive P1-DP0
diffusion numerical results for the Su and Olson test problem with the semi-analytic transport
solution. Finally, we offer concluding remarks and suggestions for future work in Section 4.

2. DERIVATIONS OF THE P 1, DP0, AND ADAPTIVE P 1-DP0 DIFFUSION
APPROXIMATIONS

In this section, we briefly outline the derivations of the P1 and DP0 diffusion approximations for
the case of non-equilibrium grey radiative transfer in planar geometry. We focus the description
of the derivations on contrasting the two angular approximations. We then demonstrate how the
two angular approximations can be combined into a single setof equations with a single
parameter allowing the selection of the P1 or the DP0 approximation. Finally, we theoretically
motivate and describe a method for adaptively selecting thelocal angular approximation based on
the degree to which the radiation and material energy density fields are in thermodynamic
equilibrium.

In the following, we assume that hydrodynamic motion and heat conduction can be neglected,
that scattering is isotropic, and that the background material is in local thermodynamic
equilibrium. Under these assumptions, the equation of time-dependent grey radiative transfer in a
one-dimensional planar geometry medium 0≤ x≤ L with space- and temperature-dependent
opacities is given by [8]

1
c

∂I
∂t

+µ
∂I
∂x

+σt I =
1
2

acσaT4
m+

1
2

σs

Z +1

−1
Idµ′+

1
2

S ,

0 < x < L , −1≤ µ≤ 1 , t > 0 , (1)

coupled with the material energy balance equation

Cv
∂Tm

∂t
= σa

[Z +1

−1
Idµ−acT4

m

]

, 0≤ x≤ L , t > 0 , (2)

wherex, µ, andt are the space, angular direction, and time variables, respectively; I (x,µ, t)
[energy/area-time] denotes the specific intensity of radiation;Tm(x, t) [temperature] is the
material temperature;σa(x,Tm), σs(x,Tm), andσt (x,Tm) [length−1] are the absorption,
scattering, and total opacities, respectively, at material temperatureTm(x, t); S(x, t)
[energy/volume-time] is an isotropic source of radiation;c [length/time] is the speed of light in a
vacuum;a [energy/temperature4-volume] is the radiation constant; andCv (x,Tm)
[energy/temperature-volume] is the material heat capacity. The initial and boundary conditions
for Eqs. 1 and 2 are given by

I (x,µ,0) = I0(x,µ) , 0≤ x≤ L , −1≤ µ≤ 1 , (3)

Tm(x,0) = T0(x) , 0≤ x≤ L , (4)
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I (0,µ, t) = Γ0(µ, t) , 0 < µ≤ 1 , t > 0 , (5)

I (L,µ, t) = ΓL (µ, t) , −1≤ µ< 0 , t > 0 , (6)

whereI0 andT0 are the prescribed initial data andΓ0 andΓL are the prescribed boundary data.

In preparation for deriving the P1 and DP0 diffusion approximations to Eqs. 1–6, we first define
two angular moments of the radiation specific intensity. Thezeroth angular moment of the
specific intensity is the radiation energy densityE (x, t) [energy/volume] given by

E (x, t) =
1
c

Z +1

−1
I (x,µ, t)dµ . (7)

The first angular moment of the specific intensity is the radiation flux F (x, t) [energy/area-time]
given by

F (x, t) =

Z +1

−1
µI (x,µ, t)dµ . (8)

In terms of the radiation energy density, the material energy balance equation is given by

Cv
∂Tm

∂t
= cσa

(

E−aT4
m

)

, 0≤ x≤ L , t > 0 . (9)

2.1. Derivation of the P1 Diffusion Approximation

In this section, we briefly outline the derivation of the P1 diffusion approximation. The P1
representation of the radiation specific intensity for allx andt is given by [2]

I (x,µ, t) =
c
2

E (x, t)+
3
2

µF(x, t) , −1≤ µ≤ 1 . (10)

Both E (x, t) andF (x, t) are continuous functions of space and time, so the P1 representation of
the specific intensity is linearly anisotropic in angle and is continuous in space, angle, and time.
To obtain equations for the unknownsE (x, t) andF (x, t), we insert Eq. 10 into Eq. 1 and
integrate the result over−1≤ µ≤ 1 to obtain the radiation energy balance equation

1
c

∂E
∂t

+
1
c

∂F
∂x

+σaE = aσaT4
m+

1
c

S , 0 < x < L , t > 0 . (11)

Next, we insert Eq. 10 into Eq. 1, multiply the result byµ, and integrate over−1≤ µ≤ 1 to obtain

1
c

∂F
∂t

+
c
3

∂E
∂x

+σtF = 0 , 0 < x < L , t > 0 . (12)

Eqs. 11 and 12, coupled with the material energy balance equation given by Eq. 9, constitute the
P1 approximation for grey radiative transfer (along with corresponding initial and boundary
conditions).
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To obtain the P1 diffusionapproximation, we make the further assumption that the timederivative
of the radiation flux is negligible. Using this assumption inEq. 12, the radiation flux is given by

F = −
c

3σt

∂E
∂x

, 0 < x < L , t > 0 . (13)

Then Eqs. 11 and 13 can be combined into a single equation for the radiation energy density
given by

1
c

∂E
∂t

−
∂
∂x

1
3σt

∂E
∂x

+σaE = aσaT4
m +

1
c

S , 0 < x < L , t > 0 . (14)

Eq. 14 for the radiation energy density, coupled with the material energy balance equation Eq. 9
for the material temperature, constitutes the P1 diffusion approximation for grey radiative transfer.

We now turn to the specification of initial and boundary conditions. Initial conditions forE (x, t)
andF (x, t) are easily derived from Eq. 3 by successive angular moment integrations analogous to
the above to obtain

E (x,0) = E0(x) =
1
c

Z +1

−1
I0(x,µ)dµ , 0≤ x≤ L , (15)

F (x,0) = F0(x) =
Z +1

−1
µI0(x,µ)dµ , 0≤ x≤ L . (16)

Although there is some ambiguity surrounding which is the most accurate boundary condition for
a PN approximation [9], we focus on the widely-used Marshak or Milne boundary condition.
This boundary condition is obtained (atx = 0 for example) by inserting the P1 representation for
the radiation specific intensity Eq. 10 into the equationZ 1

0
µ[I (0,µ, t)−Γ0(µ, t)]dµ= 0 , (17)

and performing the angular integrations to obtain

c
4

E +
1
2

F =
Z 1

0
µΓ0dµ . (18)

Inserting the expression for the P1 radiation flux given by Eq. 13, we obtain the Marshak
boundary condition atx = 0 for the P1 diffusion approximation

c
4

E−
1

6σt

∂E
∂x

=

Z 1

0
µΓ0dµ . (19)

An analogous boundary condition holds atx = L. The P1 diffusion approximation for
non-equilibrium grey radiative transfer problems is now fully specified by Eqs. 14, 15, and 19,
coupled with the material energy balance equation given by Eq. 9 and its initial condition given
by Eq. 4.
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2.2. Derivation of the DP0 Diffusion Approximation

In this section, we briefly outline the derivation of the double P0 diffusion approximation. The
DP0 representation of the radiation specific intensity for allx andt is given by [2]

I (x,µ, t) =

{

I+(x, t) , 0 < µ≤ 1 ,
I−(x, t) , −1≤ µ< 0 ,

(20)

whereI+(x, t) andI−(x, t) are continuous functions of space and time. Thus, the DP0
representation of the specific intensity is isotropic in angle in each of the half angular ranges
−1≤ µ< 0 and 0< µ≤ 1 and is continuous in space and time but potentially discontinuous in
angle. Using Eq. 20 in Eqs. 7 and 8 [5], we find thatE (x, t) = 1

c [I+(x, t)+ I−(x, t)] and
F (x, t) = 1

2 [I+(x, t)− I−(x, t)]. After algebraic manipulation, we can rewrite Eq. 20 as

I (x,µ, t) =
c
2

E (x, t)+
3
2

f (µ)F (x, t) , −1≤ µ≤ 1 , (21)

where the functionf (µ) is defined as

f (µ) =

{

+2
3 , 0 < µ≤ 1 ,

−2
3 , −1≤ µ< 0 .

(22)

Comparing Eq. 21 to Eq. 10, the P1 and DP0 angular representations of the radiation specific
intensity differ only in the linear component.

To obtain equations for the unknownsE (x, t) andF (x, t), we first insert Eq. 21 into Eq. 1 and
integrate the result over−1≤ µ≤ 1 to obtain the radiation energy balance equation given by
Eq. 11. Next, we insert Eq. 21 into Eq. 1, multiply the result by f (µ), and integrate over
−1≤ µ≤ 1 to obtain

1
c

∂F
∂t

+
c
4

∂E
∂x

+σtF = 0 , 0 < x < L , t > 0 . (23)

Eqs. 11 and 23, coupled with the material energy balance equation Eq. 9, constitute the DP0
angular approximation for grey radiative transfer (along with corresponding initial and boundary
conditions).

To obtain the DP0 diffusionapproximation, we make the further assumption that the time
derivative of the radiation flux is negligible. Using this assumption in Eq. 23, the radiation flux is
given by

F = −
c

4σt

∂E
∂x

, 0 < x < L , t > 0 . (24)

Then Eqs. 11 and 24 can be combined into a single equation for the radiation energy density
given by

1
c

∂E
∂t

−
∂
∂x

1
4σt

∂E
∂x

+σaE = aσaT4
m +

1
c

S , 0 < x < L , t > 0 . (25)
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Eq. 25 for the radiation energy density, coupled with the material energy balance equation Eq. 9
for the material temperature, constitutes the DP0 diffusion approximation for grey radiative
transfer. Comparing Eqs. 14 and 25, the DP0 diffusion approximation clearly differs from the P1
diffusion approximation only in the definition of the diffusion coefficient.

We now specify the initial and boundary conditions for the DP0 diffusion approximation. Initial
conditions forE (x, t) andF (x, t) for the DP0 approximation are the same as for the P1
approximation and are given by Eqs. 15 and 16. The Marshak boundary condition atx = 0 is
obtained by substituting the DP0 representation for the radiation specific intensity, Eq. 21, into
Eq. 17 and performing the angular integrations to again obtain Eq. 18. Inserting the
representation for the DP0 radiation flux given by Eq. 24, we obtain the Marshak boundary
condition atx = 0 for the DP0 diffusion approximation

c
4

E−
1

8σt

∂E
∂x

=

Z 1

0
µΓ0dµ . (26)

An analogous boundary condition holds atx = L. The DP0 diffusion approximation for
non-equilibrium grey radiative transfer problems is now fully specified by Eqs. 25, 15, and 26,
coupled with the material energy balance equation given by Eq. 9 and its initial condition given
by Eq. 4. We note that the DP0 diffusion approximation is only trivially different in form than the
P1 diffusion approximation.

2.3. The Adaptive P1-DP0 Diffusion Approximation

In this section, we describe how the P1 and DP0 diffusion approximations for non-equilibrium
grey radiative transfer in planar geometry can be combined into a single set of equations with a
single parameter specifying the local angular approximation. We then theoretically motivate and
describe a method for adaptively selecting the local angular approximation based on the degree to
which the radiation and material energy density fields are inthermodynamic equilibrium.

Recalling that the only difference between the form of the two approximations is in the diffusion
coefficient, we define a generalized diffusion coefficient as

D(x, t,Tm) =
1

3M (x, t)σt (x,Tm)
, (27)

where the multiplier functionM (x, t) is given by

M (x, t) =
4
3

[1−δ(x, t)]+δ(x, t) . (28)

Then choosingδ(x, t) = 1 at a givenx andt yields the P1 form of the diffusion coefficient and
δ(x, t) = 0 yields the DP0 form.

The arbitrary P1-DP0 radiation diffusion approximation is then fully specified as

1
c

∂E
∂t

−
∂
∂x

D
∂E
∂x

+σaE = aσaT4
m +

1
c

S , 0 < x < L , t > 0 , (29)
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with the initial condition

E (x,0) = E0(x) =
1
c

Z +1

−1
I0(x,µ)dµ , 0≤ x≤ L , (30)

and the Marshak boundary condition atx = 0

c
4

E−
1
2

D(0, t,Tm)
∂E
∂x

=

Z 1

0
µΓ0dµ . (31)

An analogous boundary condition exists atx = L, and these equations are coupled to the material
energy balance equation given by Eq. 9 along with its initialcondition Eq. 4. The desired angular
approximation at any space and time point can be easily chosen by the appropriate selection of
δ(x, t).

When the radiation and material energies reach thermodynamic equilibrium, the radiative transfer
and material energy balance equations asymptotically limit to first order to the equilibrium P1
diffusion approximation [7]. Under these conditions, the DP0 diffusion approximation gives an
equation with a different (incorrect) diffusion coefficient. As such, we expect the DP0 diffusion
approximation to be less accurate than the P1 diffusion approximation at and near
thermodynamic equilibrium. However, we hypothesize that the DP0 angular approximation can
more accurately capture the behavior of the radiation specific intensity than the P1 angular
approximation when the radiation and material energy density fields are out of equilibrium.
Motivated by these considerations, we propose an “adaptive” P1-DP0 diffusion approximation in
which the value of the parameterδ(x, t) for eachx andt is chosen according to the criterion

δ(x, t) =

{

1 , |
E(x,t)
Em(x,t) −1| ≤ β ,

0 , otherwise ,
(32)

whereEm(x, t) [energy/volume] is the material energy density and we have usedβ = 0.1 in our
simulations. This prescription forδ(x, t) ensures that the P1 angular approximation is used at and
near thermodynamic equilibrium [whereE (x, t) ≈ Em(x, t)] and that the DP0 angular
approximation is used otherwise.

3. NUMERICAL RESULTS

In the previous section, we derived the P1 and DP0 diffusion approximations for the case of
non-equilibrium grey radiative transfer in planar geometry. We showed that the P1 and DP0
diffusion approximations differ only in the definition of the diffusion coefficient. As a result,
these approximations can be easily combined into one set of equations with a single parameter
specifying the desired angular approximation. Finally, wedescribed a simple, physically-based
technique for adaptively choosing the local angular approximation at each point in space and
time.

We have numerically implemented the angularly adaptive P1-DP0 diffusion approximation using
the spatial and temporal discretizations described in reference [10]. In particular, the radiation
diffusion and material energy balance equations are spatially discretized using a second-order
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cell-centered differencing and temporally discretized implicitly using backward Euler
differencing. The material properties are treated explicitly in time. No iteration on the
temperature dependence of the material properties is performed, so extremely small timesteps are
used to obtain the numerical results.

In this section, we describe the Su and Olson semi-analytic benchmark problem for which a
semi-analytic transport solution exists [6]. Then we applythe P1, DP0, and adaptive P1-DP0
diffusion approximations to the numerical solution of thisproblem.

3.1. Description of the Su and Olson Benchmark Problem

To linearize the radiative transfer equation and the material energy balance equation such that a
semi-analytic solution can be obtained, Su and Olson [6] make two major assumptions: the
material opacities are constant (independent of the material temperature) and the heat capacity of
the material is proportional to the cube of the material temperature,Cv = αT3

m. While not
physically realistic, these assumptions make the equations of radiative transfer linear and allow
their semi-analytic solution.

Su and Olson write the radiative transfer equation and the material energy balance equation in
dimensionless forms as follows. The spatial variablex is written in terms of the dimensionless
optical depth,z≡ σtx. A dimensionless parameterε ≡ 4a/α is defined, whereα is the material
heat capacity proportionality constant. Then a dimensionless time variable is defined asτ ≡ εcσtt.
Dimensionless absorption and scattering opacities are defined asca ≡ σa/σt andcs≡ σs/σt ,
respectively, such thatca+cs = 1. Defining a reference “hohlraum” temperatureTR, the
dimensionless radiation specific intensity, radiation energy density, and material energy density
are given byU (z,µ,τ)≡ I (x,µ, t)/aT4

R, W (z,τ)≡
R +1
−1 U (z,µ,τ)dµ, andV (z,τ)≡ [Tm(x, t)/TR]4,

respectively. Finally, the dimensionless radiation source is given byQ(z,τ) ≡ S(x, t)/aT4
R. Using

these definitions, the dimensionless radiative transfer equation is given by
(

ε
∂
∂τ

+µ
∂
∂z

+1

)

U (z,µ,τ) =
ca

2
V (z,τ)+

cs

2
W (z,τ)+

1
2

Q(z,τ) ,

−∞ < z< ∞ , −1≤ µ≤ 1 , τ > 0 , (33)

coupled with the dimensionless material energy balance equation given by

∂V (z,τ)
∂τ

= ca [W (z,τ)−V (z,τ)] , −∞ < z< ∞ , τ > 0 . (34)

The boundary and initial conditions for Eq. 33 are given by

lim
z→±∞

U (z,µ,τ) = 0 , (35)

and
U (z,µ,0) = 0 , (36)

respectively. The initial condition for Eq. 34 is given by

V (z,0) = 0 . (37)
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The Su and Olson non-equilibrium grey radiative transfer problem consists of an initially cold,
homogeneous, infinite, and isotropically scattering medium with an internal radiation source
defined by

Q(z,τ) =
1

2z0
[H (z+z0)−H (z−z0)] [H (τ)−H (τ− τ0)] , (38)

whereH is the Heaviside step function. The source is thus defined on the dimensionless spatial
domain−z0 ≤ z≤ z0 and is turned on for dimensionless times 0≤ τ ≤ τ0. Su and Olson obtained
semi-analytic transport solutions for this problem by applying the Fourier transform to the spatial
variable and the Laplace transform to the time variable [6].

3.2. Su and Olson Problem Numerical Results

In this section, we apply the P1, DP0, and angularly adaptive P1-DP0 diffusion approximations to
the numerical solution of the Su and Olson benchmark problem. Su and Olson obtained
semi-analytic results both with and without scattering; wepresent results for the absorption-only
case here. We obtain a solution for the case of the radiation source defined by Eq. 38 with
z0 = 0.5 andτ0 = 10 and the dimensionless parameterε ≡ 4a/α = 1. Our numerical simulations
were performed with an initial timestep of∆τ = 10−9 and a timestep control that restricts the
maximum relative change in the radiation energy density in any zone during a timestep to 1%.
The spatial zoning was uniform with a zone size of∆z= 0.001, i.e. one-thousandth of a mean
free path. The material properties (σa andCv) and the angular approximation parameter (δ) were
lagged in time. We have numerically solved this problem using the pure P1 diffusion
approximation, the pure DP0 diffusion approximation, and the angularly adaptive P1-DP0
diffusion approximation withβ = 0.1 (see Eq. 32). The radiation energy density from these
simulations is plotted in Fig. 1 as a function of space at several time values.

The P1 diffusion solution for the radiation energy density has an error of approximately 20%
early in time (τ ≈ 0.1−10) for smallz. The extremely large errors for largerz are due to the fact
that the P1 diffusionapproximation (as opposed to the true P1 approximation) propagates
radiation with an infinite velocity [1]. As a result, the radiation front propagates too quickly.
Similar comments hold regarding the errors in the material energy density predicted by the P1
diffusion approximation. Later in time, the radiation and material approach thermodynamic
equilibrium and the magnitude of the errors decreases significantly. Because the radiative transfer
equation asymptotically limits to the P1 diffusion approximation at thermodynamic equilibrium,
this is a theoretically predicted result.

Early in time (up toτ = 10), the DP0 solution is significantly more accurate overall than the P1
solution (note the plots are on log-log scales). The DP0 diffusion approximation suffers from the
same infinite propagation velocity as the P1 diffusion approximation and hence exhibits large
errors past the wave front. As the radiation and material approach thermodynamic equilibrium
later in time (τ > 10), however, the DP0 solution becomes significantly less accurate than the P1
solution. These numerical results confirm the theoretical prediction described above that the DP0
diffusion approximation will be less accurate than the P1 diffusion approximation near
thermodynamic equilibrium.

The adaptive P1-DP0 solution is essentially identical to the DP0 solution forτ ≤ 3.16228 and is
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therefore more accurate than the P1 solution. Forτ = 10, the adaptive P1-DP0 solution is slightly
less accurate than the DP0 solution but still significantly more accurate overall thanthe P1
solution. Atτ = 31.6228, the adaptive P1-DP0 solution is significantly more accurate overall than
either the P1 or the DP0 solution alone. Forτ = 100, the adaptive P1-DP0 solution is slightly less
accurate than the P1 solution but drastically more accurate than the DP0 solution.

4. CONCLUSIONS

In this paper, we have developed and applied the double P0 diffusion approximation for
non-equilibrium grey radiative transfer problems in planar geometry. We described how the P1
and DP0 diffusion approximations for non-equilibrium grey radiative transfer in planar geometry
can be combined into a single set of equations with a single parameter specifying the local
angular approximation to be used at any point in space and time. We then prescribed an adaptive
method for choosing the local angular approximation such that the P1 angular approximation is
used at and near thermodynamic equilibrium and the DP0 angular approximation is used
otherwise.

We compared the accuracy of the DP0 and the adaptive P1-DP0 diffusion approximations to the
P1 diffusion approximation using a semi-analytic test problem developed by Su and Olson [6].
We found that the DP0 diffusion approximation is generally more accurate than the P1 diffusion
approximation when the radiation and material are out of equilibrium but is less accurate near
thermodynamic equilibrium. These results motivated the development of an adaptive P1-DP0
diffusion approximation in which the local angular approximation used is adaptively determined
at each point in space and time by thermodynamic equilibriumconsiderations. This adaptive
angular approximation provides improved accuracy for the Su and Olson test problem over the P1
diffusion approximation during the non-equilibrium phaseand essentially the same accuracy near
thermodynamic equilibrium. These numerical conclusions should be further verified on a broader
range of problems with more realistic opacities.

The full P1 approximation, as opposed to the P1 diffusionapproximation, retains information
regarding the time derivative of the radiation flux. As a result, the P1 approximation can give
more accurate results than its corresponding diffusion approximation [1, 9]. One possible area of
future work is to investigate whether the same holds true when comparing the full DP0 and the
DP0 diffusionangular approximations. Another area of possible future work would be to
investigate whether the accuracy improvements demonstrated by the DP0 diffusion approximation
compared to the P1 diffusion approximation remain when comparing the full P1 and DP0
approximations. If so, the full DP0 and P1 angular approximations could be combined into an
adaptive angular approximation similar to the corresponding diffusion scheme presented in this
paper. In addition, Olson et al [1] have recently proposed the P1/3 approximation which is an
appropriately weighted average of the full P1 approximation and the P1 diffusion approximation
such that the correct radiation propagation velocity is obtained in the optically thin limit. This
P1/3 approximation retains first order accuracy in the equilibrium diffusion limit [7]. The same
approach can be used with the full DP0 approximation and the DP0 diffusion approximation to
develop a DP0-based approximation with the correct radiation propagation velocity.

The double P0 angular approximation has seen little use in recent years, due at least in part to its
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Figure 1. Radiation energy density as a function of space at several time values
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perceived inapplicability to multi-dimensional geometries. However, Paveri-Fontana and
Amster [4] theoretically extended the DP0 approximation for steady-state neutronics problems to
multi-dimensional geometries using both a generalizationof the typical angular moments-based
derivation of the DP0 approximation as well as a variational analysis. The diffusion equation they
derived for the DP0 approximation differed from the standard P1 diffusion equation only in the
value of the diffusion coefficent. However, their paper doesnot present numerical results to
examine the accuracy of the method. We plan to investigate this multidimensional extension for
radiative transfer applications.
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